@

. AD-A275 861 TesuSubtask 052389 |

a CDRL Sequence 05504-001
|MI“HMHMH 31 July 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Cleanroom Engineering Handbook
Volume 4
Specification Team Practices

Contract No. F19628-88—-D-0032
Task ID52 — STARS Technology Transfer Demonstration
Project for the U.S. Army

Y HVS’D
Prepared for: FECTED ©

Electronic Systems Center
Air Force Materiel Command, USAF
Hanscom AFB, MA 01731-2816

Prepared by:

IBM Federal Systems Company S

= \m\\u\\\m\\m\\m\\\\\\\\\\u\\\\\\\@c\@o

Gaithersburg, MD 20879

94 2 17 081

Approved for Public Release, Distribution is Unlimited

Y
- -

Task/Subtask 1D52.1(2)
CDRL Sequence 05504-001
31 July 1993

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

Cleanroom Engineering Handbook
Volume 4
Specification Team Practices

Contract No. F19628-88-D-0032

Task ID52 - STARS Technology Transfer Demonstration
Project for the U.S. Army

Prepared for:

Y
dcocession Yor b

Electronic Systems Center :gg T:g“l g’
Air Force Materiel Command, USAF Unannounced 0O
Hanscom AFB, MA 01731-2816 Justifieation
By
Diatribution/

Availability Godes
11 and/er
Dist Spectal

IBM Federal Systems Company 7/ ‘
800 North Frederick Avenue ”

Gaithersburg, MD 20879

Prepared by:

REPORT DOCUMENTATION PAGE form Approved

& OmB No 0704.0168

Supi FCBONAG DrsBen 162 100y (OMECHON OF NIOIMALDA % TIINPEC 1S 2=020CP * N0l O@r O ve UG IR L 1O FEVIE ARG LT LTSN, WAL S0 40T CalS WO
GG SAT FAIeALarreng The G415 NECTEd. SND LOMDICURG SNG e~ "G TNE (CHETION J° s3I0 ™2 11T WERC (OMMENTY FETI ONG Ihr) DurOEN PALMaLE CF gny Simes 2VOeC] OF Ty
(ORECUON OF IMIBIMALODP, sl MG TCIOM $O7 IPTUCING they DuIOE® I RIINGION e BOCUI e Se7 vty Do e 0rate fOv 10 maton Ooeratiom ang CeOCMIs. V)Y seterron
Daven tngP wrae. Sunte 1204, Artongion, VA 221074307, 006 16 the 07«2 2° MIneQT™EnT 47C BuGErT LOTr mCre Kedulion P1oredt (0708 0 188). Weavnncion S 274C)

1. AGENCY USE ONLY (Leave blank) |2 REPORT DATE [3. REPORT TYPE AND DATES COVERED
7/31/93 { Initial

& TITLE AND SUBTITLE S. FUNDING NUMBERS

Cleanroom Engineering Handbook:

Specification Team Practices F19628-88-C-0032/0010

6. AUTHOR(S)

Ara Kouchakdjian Alan R. Hevmner

Richard H. Cobb James A. Whittaker
7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
IBM Federal Systems Company SET, Inc.
800 North Frederick Avenue 2770 Indian River Blvd. 05504-001
Gaithersburg, MD 20879 Vero Beach, FL 32960 Volume 4
P ——————————————————————ee et e

9. SPONSORING ; MONITORING AGENCY NAME(S) ANDO ADORESS(ES) 10. SPONSORING MONITORING

AGENCY REPORT NUMBER
Electronic Systems Center/ENS

Alr Force Materiel Command, USAF
5 Eglin Street, Building 1704
Hanscom Air Force Base, MA 01731-2116

1. SUPPLEMENTARY NOTES

N/A
123. OISTRIBUTION 7 AVAILABHLITY STATEMENT 12b. DISTRIBUTION COOE

Cleared for Public Release, Distribution is Unlimited

13. ABSTRACT (Maximum 200 words)

This is one of a series of six engineering handbooks prepared for and used by the engineering staff at
Picatinny Arsenal for the STARS technology transfer demonstration. The handbooks define the engineering
process and algorithms that will be used in Cleanrcom projects. They are designed to provide support to
trained engineers using Cleanroom Engineering, not to substitute for training.

This handbook, Volume 4, explains the set of specific tasks performed by the Cleanroom Specification Team
for each cycle of a project. Specificatior tasks are described and the relationship among tasks are
defined. The Cleanroom specification team's mission is to create the system specification in six
specification volumes. Templates are proposed as recommended formats for the presentation of information
and tasks results. Techniques for revising the specifications throughout the system life cycle are
described. ’

The Cleanroom process model for software system development projects is presented in Volume 1 - Cleanroom
Process Overview - of this series of Cleanroom Handbooks. This handbook, Volume 4, describes the activitie$
of the Specification Team for each cycle of project development. The specification activity may include
the preparation of both system and software specifications, depending on the needs and status of the
project. Specifications define the requirements placed on the system so it can satisfy its mission and the
behavior the system must exhibit to fulfill the assigned requirements. A system specification defines
requirements and behavior for a solution which integrates some combination of hardware, software, communi-
cations, human behavior, etc. A software specification defines requirements and behavior for the software
components of the system. The focus of this volume is on the preparation of software specifications. The |
techniques described are useful for preparing system specifications but in order to keep the handbook withig
y
t

Ie

14. SUBSECT TERMS : 15 NUMBER OF PAGES
Certification, Cleanroom, Cleanroom Engineering, Development, 69
Management, Software Development, Specification “6 PRICE CODE ‘
N/A ‘
17. SECURITY CLASSIFICATION | 18. SECURITY CLLSSIFICETION [IS SECUEITY CLASSISICLATION [20 LINITATION OF ABSTRACT *
OF REPORT OF THIS PAGLE O £BSTRZCT
Unclassified Unclassizi.e | Unelaseifingg SAR

L4t TRaA N cen 500,

PREFACE

This series of handbooks is prepared for use by managers and engineers assigned to
Cleanroom projects at Picatinny Life Cycle Software Engineering Center.

These handbooks define the engineering process and algorithms that will be used in
Cleanroom projects.

This document was developed by the IBM Federal Systems Company, located at 800 North
Frederick Avenue, Gaithersburg, MD 20879 and Software Engineering Technology, Inc. located
at 2770 Indian River Boulevard, Vero Beach, FL 32960. Questions or comments should be
directed to Mr. Paul Amold at 301-240-7464 (Intemet: pga@sei.cmu.edu).

This document is approved for release under Distribution “C” of the Scientific and Technical
Information Program Classification Scheme (DoD Directive 5230.24). Permission to use, modify,
copy or comument on this document for purposes stated under Distribution “C” without fee is is
hereby granted. The Government (IBM and its subcontractors) disclaims all responsibility against
liability, including expenses for violation of proprietary nights, or copyrights arising out use of this
document. In addition, the Government (IBM and its subcontractors) disclaims all warranties with
regard to this document. In no event shall the Government (IBM nor its subcontractors) be liable
for any damages in connection with the use of this document.

Section 2:

Section 3:
3.1
32
33
34

Section 4:
4.1
42
4.3

44

Section 5:
5.1
5.2
53
54
55
5.6

Section 6:

Section 7:
7.1
7.2
7.3
7.4

Section §:

CLEANROOM ENGINEERING SPECIFICATION

TABLE OF CONTENTS

Introduction
Background and Motivation
Cleanroom Specification Process Model - P4.i

Planning the Specification Cycle

Problem Domain Analysis

Information Collection

Reverse Engineering

Developing and Analyzing Black Box Models
Developing and Analyzing Markov Usage Models

Solution Domain Analysis

Information Collection

Reuse Analysis

Determining Black Box Behavior for Objects Known to be
In the Solution Domain

Prototyping

Preparing The Specification

Volume I - The Mission

Volume II - User’s Reference Manual
Volume III - Black Box Functions
Volume IV - Black Box Verification
Volume V - Usage Profile

Volume VI - Construction Plan

Appraising Cycle i Specifications

Revising Specifications

Increase Understanding of Problem and Solution Domains
Revise Specification

Publish Specification Changes

Perform Replanning

Tailoring Specifications for Increment j

Appendix A: Box Description Language BNF

ID52 - Vol. 4 - Specification Team Practices

17
18
21
28
38

39

41
43

47
47
49
51
52
52
54

35
56
57
58
58
59
60

62

Page 1

CLEANROOM ENGINEERING SPECIFICATION
SECTION 1: INTRODUCTION

The mission of this handbook for Cleanroom Specification is to organize and explain the set of
specific tasks performed by the Cleanroom Specification Team for each cycle of a project.
Specification tasks are described and the relationships among tasks are defined.

The Cleanroom Specification Team mission is to create the system specification in six

specification volumes. Templates are proposed as recommended formats for the presentation
of information and task results. Techniques for revising the specifications throughout the system
life cycle are described.

The Cleanroom process model for software system development projects is presented in Volume
1 - Cleanroom Process Overview of this series of Cleanroom Handbooks. This handbook,
Volume 4, describes the activities of the Specification Team for each cycle of project
development. The specification activity may include the preparation of both system and software
specifications depending on the needs and status of the project. Specifications define the
requirements placed on the system so it can satisfy its mission and the behavior the systermn must
exhibit to fulfill the assigned requirements. A system specification defines requirements and
behavior for a solution which integrates some combination of hardware, software,
communications, human behavior, etc. A software specification defines requirements and
behavior for the software components of the system. The focus of this volume is on the
preparation of software specifications. The techniques discussed are useful for preparing system
specifications but in order to keep the handbook within a manageable focus, this presentation is
limited to software.

1.1 Background and Motivation

The fundamental objective of software specification is to describe requirements in black boxes.
The black box is a pure form for defining system requirements without jumping into design
decisions prematurely. The major tasks involved in preparing a specification are

Analysis of the problem domain to gain sufficient understanding to support the creative
inventions required to develop the software solution. This analysis activity recognizes that
it is a rare event when a software solution does not replace some existing solution and it is
always important to understand the system being replaced in order to invent a replacement.
The major activities performed to understand the problem domain include information
collection, reverse engineering, black box modeling, and Markov usage profile modeling.
In many (maybe even most) situations, the first goal of problem domain analysis is to
develop a black box description of the behavior of some aspect of the current system. In
every case, the final goal is to have a black box description of the behavior of the system
to be implemented. [Section 3]

ID52 - Vol. 4 - Specification Team Practices Page 2

Analysis of the solution domain to gain sufficient understanding to support the creative
inventions_required to develop the software solution. This analysis recognizes that the
software is to be implemented in some environment and one or more aspects of that

environment must be better understood in order to determine how it will influence the
behavior of the software solution. The major activities performed to understand the solution
domain include information collection, reuse analysis to search for existing components that
can be included in the final design, black box modeling to determine the precise behavior
of objects that will play a part in the final system solution, and developing prototypes to
investigate some aspect of a possible solution. [Section 4)

The creative steps of inventing the visible behavior of the software solution that is to be
developed. The visible behavior of a software solution is defined by the stimuli and

responses that are invented to communicate with the software and the behavior that is desired
in terms of what responses the software should produce as a result of all the stimuli that the
software has received previously. The goal of the creative step is invent the most cost
effective software to meet the mission and to record the details of the invented stimuli and
responses and the invented behavior in terms of a black box function. [Section 5]

The recording of the results of the analysis and the inventive steps in the specification
volumes. Specifications are written documents that define the software to be implemented.

[Section 5]

Maintaining intellectual control of the specifications during software development and

certification process so the final specification fully matches the software as implemented and
certified. The major activities performed include making minor revisions to the

specifications to make them clearer or to develop solutions to minor discrepancies found
during development and certification, configuration management and answering questions as
they arise to insure full understanding. [Sections 6 and 7]

Revising the specifications. In some cases the development or certification activity will
uncover a problem that needs to be studied or some new fact about the world with which the
software interacts is uncovered or changed. The result is that the specifications no longer
reflect what is needed. In this case the specifications must be updated to reflect new or
revised inventions. [Section 7]

Determining specifications is the most critical, yet least understood, phase of systems devel-
opment. Many system and software development projects fail because of inadequate
understanding of problem requirements. In many cases, even when a system is completed, it
does not solve the target problem. It has also been observed that the identification and correction
of errors in specifications consume a major portion of system development time and resources.
Specification tasks entail close cooperation between the Cleanroom Specification Team, the
customer and system users. Thus, behavioral skills are just as important as technical skills in
order to get the system specification ’right’. It is imperative that developers have solid method-
ological support for this critical phase of system development.

ID52 - Vol. 4 - Specification Team Practices Page 3

...

As befits its importance, many methods and techniques have been developed to perform system
and software specification. A survey of the most well-known methods is found in "A
Comparison of Techniques of External System Behavior" by Alan Davis in September 1988
Communications of ACM. We observe that current specification methods exhibit several well-
known problems which the use of box-structures techniques associated with Cleanroom are
designed to solve. The specification problems which the box-structure techniques solve include:

The elicitation of system objectives and requirements from customers and other system
stakeholders is a difficult process. Communication skills among developers, customers, and
domain experts are essential. Methods (e.g.; Joint Application Design - JAD) and tools (e.g.;
group decision support systems - GDSS) have been devised to support requirements
elicitation and gathering. However, many communication obstacles inhibit the collection of
accurate information. The principal obstacle is finding a convenient way to define actual or
desired behavior in a form that is free of implementation complexities so all interested parties
can reason about the intended behaviors.

Reverse engineering techniques are not used to advantage in system specification. Typically,
one or more systems already exist that perform some of the desired system’s required
functions. Making effective use of the existing systems by reverse engineering them is an
important step of specification.

A majority of methods use the same representation for requirements modeling and
specification. It is very difficult, however, for one representation to serve both as a
communication interface with the customer and as a formal statement of requirements
suitable for rigorous analysis and communication with developers. Graphic forms are
appropriate for communication models while more formal languages are appropriate for

specifications.

Specification analysis lacks an established set of metrics to evaluate the *goodness’ of the
requirements. There are needs for both quantitative and qualitative standards to evaluate
specification consistency, completeness, clarity, etc. The advent of more formal specification
languages provides better ways of defining and measuring requirement metrics.

Most specification methods do not support an integrated system development process. True
process integration requires common underlying concepts throughout the complete system
development. The final system specification should be based on the same concepts and
representations as are used in subsequent phases of system design and implementation.

Current methods fail to recognize the iterative nature of the systems development process.
It is foolish to think that complete system requirements can be frozen at the beginning of
system development. Controlled, incremental system development is a more realistic and
practical paradigm.

ID52 - Vol. 4 - Specification Team Practices Page 4

1.2 Cleanroom Specification Process Model

As described in Volume I of the Cleanroom Process Manuals, Cleanroom system and software
development can be described in a detailed process model. A complete development project for
system S can be divided into cycles for specification.

Process P4, Specification Preparation, results in the preparation of the desired specification. This
process assumes the entire specification activity is subdivided into cycles. Each cycle is short
relative to the entire specification effort. The major idea behind this division into cycles is to0
help keep the specification effort under intellectual control. Each cycle has three main activities
as follows:

1. Prepare a plan for the cycle based on current progress and appraisal of results.

2. Execute the plan for the specified period.

3. Appraise progress and the direction the design is heading.
The appraisal can either result in a continuation of current direction, a modest change in
direction, or a major change in direction which results in a replanning of the project. In modest
sized projects a cycle of one or two weeks is sufficient. In major projects it may be desirable
to permit a cycle as long as 4 weeks. It is very rarely if ever desirable to permit cycles on more

than 4 or 5 weeks. That is the way projects get out of control and the result is wasted money.
The detailed process model for P4 is:

ID52 - Vol. 4 - Specification Team Practices Page 5

proc P4: Specification Preparation
[This process results in specifications for the software to produced in this spiral (project).]
[P4: Specification Preparation]

while

(project spiral not terminated and plan still has more cycles to be completed) or not
(M4.i.5.2 management decision was specification suitable to initiate development)
[M4.i.5.2 results in one of the following decisions: Specifications ready, another
specification cycle is necessary, stop specifications and replan.]

do

[P4.i handles the investigations for (including prototyping), preparation of, and appraisal
of the specifications, resulting in the specifications for a project/spiral when all cycles are
complete.]

run P4.i: Software Specification for Cycle i; [where i is the next cycle in the sequence

if

i= 1...i..m according to the project plan]
M4.i.5.2 management decision was specification problems-replan project or (this is

last cycle in plan and not M4.i.5.2 management decision was specifications suitable
to initiate development)

[M4.i.5.2 results in one of the following decisions: Specifications ready, another
specification cycle is necessary, stop specifications and replan.]

then

fi;
od;
corp;

[PCS1: is a common service procedure which results in an updated Software
Development Plan or a decision to terminate current project/spiral.]
run PCS1: Replan project/spiral;
if MCS1.4 management decision indicates need to terminate project spiral
then
terminate current spiral
fi;

1.3.1 Process For Specification Cycle i

The engineering task for the specification of cycle i is labeled P4.i, Cleanroom Specification for
Cycle i. The process is expanded into engineering subprocesses (i.c., tasks) for execution by
Cleanroom-trained software engineers. The detailed process model for P4.i is:

ID52 - Vol. 4 - Specification Team Practices Page 6

proc P4.i: Software Specification for Cycle i
[P4 handles the investigations for (including prototyping), preparation of, and appraisal of
the specifications, resulting in the specifications for a project/spiral.]
do [P4.i: Software Specification for Cycle i}
run P4.i.1: Prepare Plan for Cycle i;
for
Allocated time period
do
con
[P4.i.2 studies the problem domain to guide system design]
run P4.i.2: Problem Domain Analysis-Cycle i;
[P4.i.3 studies the solution domain to guide system design including searching for
reuse opportunities}]
run P4.i3: Solution Domain Analysis-Cycle i;
[P4.i.4 is a complete preparauon cycle through the six volume spec1ﬁcauon]
run P4.i4: Prepare Cycle i Specifications;
noc;
od;
run P4.i.5: Appraise Cycle i Specifications;
od;
corp;

A brief summary of each of the five specification tasks is presented in the balance of this section.
Sections 2 through 5 describe the specification processes (P4.i.2 - P4.i.5) in greater detail.

1.3.2 Prepare Plan for Cycle i
The first task of specification cycle is to prepare a plan for cvcle i.

proc P4.i.1: Prepare Plan for Cycle i
do [P4.i.1: Prepare Plan for Cycle i}
con
M4.i.1.1: Establish Objectives For Cycle i;
M4.i.1.2: Allocate Time Period To Cycle i;
M4.i.1.3: Prepare Plan For Cycle i;
noc;
until
Completion Conditions achieved for combination of M4.i.1.1, M4.i.1.2 and M4.i.1.3
od;
corp;

Planning in the Cleanroom environment is discussed in Volume 3 - Cleanroom Planning. Issues
unique to planning the specification cycle are discussed in Section 2.

ID52 - Vol. 4 - Specification Team Practices Page 7

1.3.3 Problem Domain Analysis for Cycle i

The Specification Team needs to understand the problem domain in sufficient detail to invent and
specify a new solution. The formal way we gather understanding and then act on that
understanding to develop a solution is called analysis. Typically a great deal of the effort
associated with the analysis of the problem domain is fact finding and then analysis to develop
a useful model for communications, for reasoning, and, eventually, for recording in specification
document. In most situations, much of the analysis relates to understanding the current system
and then determining how the systems should be changed. The major activities performed to
understand the problem domain include information collection, reverse engineering, black box
modeling, and Markov usage modeling. In many (maybe even most) situations the first goal of
problem domain analysis is to develop a black box description of the behavior of some aspect
of the current system. In every case the final goal is to have a black box description of the
behavior of the system to be implemented.

A detailed model for P4.i.2 Problem Domain Analysis-Cycle i is:

ID52 - Vol. 4 - Specification Team Practices Page 8

proc P4.i.2: Problem Domain Analysis-Cycle i
do [P4.i.2: Problem Domain Analysis-Cycle i)
con
for each analysis method in plan
do
case [select the appropriate analysis method]
analysis method is
part Information Collection [collect and document required information]
S4.i.2.1: Information Collection;
part Reverse Engineering [develop black box function for each system]
S4.i.2.2: Assemble Information for System(s)
for each system in need of reverse engineering
do
case
existing system type is
part Manual
S4.i.2.3: Manual System Reverse Engineering;
part Automated
S4.1.2.4: Automated System Reverse Engineering;
part Hybrid
S4.1.2.5: Hybrid System Reverse Engineering;
e€sac;
od;
part Black Box Models {develop black box function model for system to be
buili, document in Specification volumes 2 and 3]
S54.1.2.6: Develop and Analyze Black Box Model;
part Markov Usage Models [develop Markov usage model for system to be
built, document in Specification volume 5]
S4.i.2.7: Develop and Analyze Markov Usage Model;
esac;
od;
noc;
until
sufficient Completion Conditions achieved for all selected analysis methods and (time
period up or sufficient understanding has been obtained)
od;
corp;

Section 3 of this manual discusses engineering practices that are useful in accomplishing each
of these 7 activities in 4 sections as follows:

3.1 Information Collection

3.2 Reverse Engineering

3.3 Developing and Analyzing Black Box Models

3.4 Developing and Analyzing Markov Usage Models

ID52 - Vol. 4 - Specification Team Practices Page 9

1.3.4 Solution Domain Analysis-Cycle i

In addition to fact finding about and analyzing the problem domain it is often necessary to
analyze the solution domain in order to gain sufficient understanding of possibilities to
understand the best direction to guide inventions. This analysis recognizes that the software is
to be implemented in some environment and one or more aspects of that environment must be
better understood to determine how it will influence the behavior of the software solution. The
major activities performed to understand the solution domain include information collection, reuse
analysis, black box modeling, and developing prototypes to investigate some aspect of a possible
solution.

A detailed model for P4.i.3 Problem Domain Analysis-Cycle i is:

proc P4.i.3: Solution Domain Analysis-Cycle i
do [P4.i3: Solution Domain Analysis-Cycle i]
con
for each analysis method in plan
do
case [select the appropriate analysis method]
analysis method is
part Information Collection [collect and document required information]
S4.i.3.1: Information Collection;
part Reuse Analysis [consider reuse options effect on system behavior]
do
S4.i.3.2: Browse Reuse Repositories To Find Match For Needs;
S4.i.3.3: Prepare Cost/Benefit Analysis;
S4.i.3.4: Select Potential Reuse Modules for Integration into System;
until
Completion Conditions achieved for combination of 54.i.3.2-S4.i.3.4
od;
part Black Box Models [document unspecified objects as black box fox
functions]
$4.1.3.5: Determine Black Box Behavior Of Other Solution Domain Objects;
part Prototyping [design, develop, conduct and appraise prototype experiments
to appraise solution possibilities]
do
$4.i.3.6: Develop prototype software using Cleanroom practices;
$4.i.3.7: Conduct and appraise prototype experiment
$4.i.3.8: Store prototype components in project reuse repository;
until
Completion Conditions achieved for combination of S4.i.3.7 and S4.i.3.8
od;
esac;
od;

ID52 - Vol. 4 - Specification Team Practices Page 10

noc;
until
sufficient completion Conditions achieved for all selected analysis methods and (time
period up or sufficient understanding has been obtained)
od;
corp;

Section 4 of this Manual discusses engineering practices that are useful in accomplishing each
of these 8 activities in 4 subsections as follows:

4.1 Information Collection

4.2 Reuse Analysis

4.3 Determine Black Box Functions For Objects Known To Be In Solution Domain

4.4 Prototyping

1.3.5 Prepare Cycle i Specifications

The Specification Team develops understanding of the problem and solution domains and begins
to invent the solution for the new software to be developed. They record their understanding and
the inventions in the specification volumes. They develop the writings in stages, providing more
and more details until they have the specifications complete. In early cycles the emphasis is on
the early volumes and in latter cycles the emphasis switches to the latter volumes.

A detailed model for P4.i.4 Prepare Cycle i Specifications is:

proc P4.i4: Prepare Cycle i Specifications
do [P4.i.4: Prepare Cycle i Specifications]
con
S4.i4.1: Record Cycle i Results In Mission Volume;
54.i4.2: Record Cycle i Results In User’s Reference Manual Volume;
S4.i.4.3: Record Cycle i Results In Black Box Function Volume;
S4.i4.4: Record Cycle i Results In Mission Validation Volume;
S54.i.4.5: Record Cycle i Results In Usage Profile Volume;
S4.i4.6: Record Cycle i Results In Construction Plan Volume;
noc;
until
Completion Conditions achieved for S4.i.4.1 through S4.i.4.6
od;
corp;

The results of the software specification activities are published as a software system
specification in six volumes. The six volumes are:

Volume I - The Mission
Volume II - User’s Reference Manual

IDS2 - Vol. 4 - Specification Team Practices Page 11

Volume III - Black Box Functions
Volume IV - Black Box Verification
Volume V - Usage Profile

Volume VI - Construction Plan

The Mission Volume defines the mission the software is to perform in terms of function and
performance. The User’s Reference Manual Volume describes the user transactions at
appropriate levels of abstraction. The Black Box Functions Volume defines the precise stimulus-
response behavior required of the software system. The Black Box response to every stimulus
is based on the preceding stimuli sequence and the real time performance required. The Black
Box Verification Volume presents the justification that the Black Box specifications found in
Volume III are correct as written. The Usage Profile Volume defines the statistical usage profile
of the users external interaction with the software. The Construction Plan Volume defines the
sequence of increments in which the software is to be developed and certified.

The software specification tasks are discussed in Section 5 of this process manual.
1.3.6 Appraise Cycle i Specifications

A management review and evaluation of the cycle i specifications are essential before software
system development begins.

proc P4.i.5: Appraise Cycle i Specifications
do [P4..5: Appraise Cycle i Specifications]
M4.i.5.1: Review and Evaluate Cycle i specifications;
M4.i.5.2: Management Decision: (1) Specifications Suitable To Initiate Development
or (2) Specification Problems-Replan Project or (3) Continue Specification
Effort with cycle i+1;
od;
until
Completion Conditions achieved for M4.1.5.2
corp;

Planning in the Cleanroom environment is discussed in Volume 3 - Cleanroom Planning. Issues
unique to planning the specification cycle are discussed in Section 6.

ID52 - Vol. 4 - Specification Team Practices Page 12

CLEANROOM ENGINEERING SPECIFICATION
SECTION 2: PLANNING THE SPECIFICATION CYCLE

Experience indicates that short specification cycles that encourage frequent, short reviews of
progress and directions are effective for developing quality specifications. The important aspects
in planning for the specification cycle are to assess the current situation, develop objectives that
can be accomplished in two to four weeks, and assess progress and accomplishments. In this
way the Specification Team can organize to have good interactions with all stakeholders in the
system.

The specification cycle planning process is:

proc P4.i.1: Prepare Plan for Cycle i
do [P4.i.1: Prepare Plan for Cycle i}
con
M4..1.1: Establish Objectives For Cycle i;
M4.i.1.2: Allocate Time Period To Cycle i;
M4.i.1.3: Prepare Plan For Cycle i;
noc;
until
Completion Conditions achieved for combination of M4.i.1.1, M4.i.1.2 and M4.i.1.3
od;
corp;

Planning in the Cleanroom environment is discussed in Volume 3 - Cleanroom Planning. Which
levels of management that will participate in the planning and decision making will depend on
the circumstance. In most situations the Specification Team Leader and the Software Engineering
Manager will make all decisions. In other circumstances they will want to get others involved.
The important issue is that there be good coordination between the planning activity P4.i+1.1 and
the appraisal activity P4.i.5. In planning for cycle i+1 the Specification Team Leader and the
Software Engineering Manager need to take into account all the findings made during the
appraisal process. It is the appraisal step that needs good representation from all interested
parties to the specification.

Specification Teams are faced with many situations. When using Cleanroom practices they have
a firm idea of where they need to get to in terms of the documents they need to prepare and the
inventions they need to make. The starting point is always different depending on the situation
that exists when the project starts. Plans for specification cycles must accommodate the starting
situation and be adjusted dynamically as new aspects of the problem and solution domain are
uncovered. In the following paragraphs, guidance is provided on what problem and solution
domain techniques can be usefully applied depending on the situation.

ID52 - Vol. 4 - Specification Team Practices Page 13

Specification Teams must be prepared to handle many different starting points for systems
development. The specification process may be faced with situations that vary from no current
system, manual or automated, in place to a fully functional system that simply needs to be ported
to new hardware or software. Situations may also exist where several existing systems perform
various required functions of the new, desired system. It is a critical specification task to
evaluate the potential of these existing systems to provide important guidance and transformation
or reuse opportunities for system development. In this section, a framework is presented for
analyzing different starting points for Cleanroom specification. Guidance is provided on how to
adapt the specification process appropriately.

The Specification Team evaluates the ’starting point’ for development of the new system.
Information on existing systems is gathered and analyzed via reverse engineering methods. Four
principal development options exist for the required components of the new system. The
complete system specification will consist of component specifications based on one or more of
the following options:

¢ Creation - No reuse or reengineering opportunities exist for system components. The full
Cleanroom processes of specification, development, and certification are applied to the
creation of these system components from scratch.

* Reuse - Existing system components are discovered that can be reused in the new system.
Minimal modification is needed to integrate these components into the system specification.
Effective reuse requires very little specification and development work. Cleanroom
certification will be performed as the reused components are integrated into appropriate
development increments and tested. In cases where the project is being performed in the
MegaProgramming environment then the application development project has been preceded

- by a Domain Analysis and the implementation of assets that will be residing in a reuse
repository. The Specification Team will need to determine how best to reuse these domain
assets.

» Transformation - Existing system components are found to prc vide the required functionality,
however, some form of transformation is needed to integrate the components into the new
system environment. As examples: a manual system can be automated, an automated system
can be moved to a new hardware platform, or an automated system can be reprogrammed in
a new programming language. The role of the Specification Team in component
transformation is to clearly specify the target system environment and define the
transformation tasks on the existing components. The Development Team will perform the
transformations and the component will undergo certification testing as it is integrated into the
appropriate system increment.

* Reengineering - An existing system component may provide an excellent base on which to
build a component for the new system. The existing component must incorporate new
requirements and/or new functional enhancements to fulfill its mission. The reengineering of
system components involves understanding the current system behavior (i.e., reverse

ID52 - Vol. 4 - Specification Team Practices Page 14

engineering) and modifying the behavior to enhance and improve the system. The
Specification Team modifies the specification of the recovered component to include new
requirements and enhancements. This specification is integrated into the overall system
specification delivered to the Development Team. The system component is developed and

certified as a newly created component.

A system specification may begin with varying starting points. However, with a thorough

analysis of specification options, the Specification Team can identify the most effective methods
to apply to their given situation. The following Table I presents several common specification
starting points and how the Cleanroom process is applied.

Table I - Specification Starting Points

Situation

Specification Options

Existing software functionality to be duplicated on
another platform in another language with maybe a
more modern solution architecture. No functional

enhancements are to be made. Two cases:

(a) nave source code
(b) no source code

(e.g., MBC case with no source code)

- Reverse engineer existing software
to understand functionality.

- Specify needed transformation
tasks to transform existing system
components to new architecture
and/or new language.

Existing software functionality to be duplicated on
another platform in another language. Minimal
functional enhancements are expected.

- Reverse engineer existing software
to understand functionality.

- Reengineer current specification to
include new functional
enhancements.

- Specify needed transformation
tasks to transform existing system
components to new language.

Existing software to be extended with new
requirements. Two cases:

(a) no new components

(b) new components

(e.g., COFT)

- Reverse engineer existing software
to understand functionality.

- Reengineer existing component
specifications to include new
requirements.

- Create new component speci-
fications with new requirements.

ID52 - Vol. 4 - Specification Team Practices

Page 15

Existing software needs to be understood before - Reverse engineer existing software
further planning and specification can proceed. to understand functionality.

Existing manual process to be automated and im- - Reverse engineer existing manual
proved. process to understand functionality.

- Reengineer existing component
specifications to include new
requirements.

- Create new component speci-
fications with new requirements.

New automated process to be created. No existing | - Create new component speci-
systems provide required functionality. fications to satisfy required
functionality.

IDS52 - Vol. 4 - Specification Team Practices Page 16

CLEANROOM ENGINEERING SPECIFICATION
SECTION 3;: PROBLEM DOMAIN ANALYSIS

Specification projects usually begin with a heavy emphasis on understanding the problem domain
so the Specification Team gains familiarity with the problem for which a solution is required.
However, the Specification Team must never lose sight of their basic objective; that is, describing
the system requirements as a black box. Thus, information in the problem domain should be
gathered and described as completely as possible in black box formats. In other words, the team
should concentrate on understanding the problem requirements in terms of available stimuli,
needed responses, and the behaviors that transform the stimulus histories into responses. The
process for understanding the problem domain is P4.i.2.

proc P4.i.2: Problem Domain Analysis-Cycle i
do [P4.i.2: Problem Domain Analysis-Cycle i]
con
for each analysis method in plan
do
case [select the appropriate analysis method]
analysis method is
part Information Collection [collect and document required information]
S4.i.2.1: Information Collection;
part Reverse Engineering [develop black box function for each system]
S4.1.2.2: Assemble Information for System(s)
for ecach system in need of reverse engineering
do
case
existing system type is
part Manual
S4.i.2.3: Manual System Reverse Engineering;
part Automated
S4.i.2.4: Automated System Reverse Engineering;
part Hybrid
S4.i.2.5: Hybrid System Reverse Engineering;
esac;
od;
part Black Box Models [develop black box function model for system to be built,
document in Specification volumes 2 and 3]
$4.i.2.6: Develop and Analyze Black Box Model;
part Markov Usage Models [develop Markov usage model for system to be built,
document in Specification volume 5]
S$4.i.2.7: Develop and Analyze Markov Usage Model;
esac;
od;

ID52 - Vol. 4 - Specification Team Practices Page 17

noc;
until
sufficient Completion Conditions achieved for all selected analysis methods and (time
period up or sufficient understanding has been obtained)
od;
corp;

Each of these activities are discussed in the following sections as follows:
Information Collection Section 3.1
Reverse Engineering Section 3.2
Developing and Analyzing Black Box Models Section 3.3
Developing and Analyzing Markov Usage Models Section 3.4

Specification activities support the understanding, gathering, modeling, and analysis of system
requirements in the form of black boxes. It is important to recognize the high-level system view
of a solution first. A system solution is typically composed of hardware, software (newly
developed and packaged), and human behavior; as well as effective interfaces among components.
An integrated system solution is developed to make best use of these components.

The following sections provide guidance for developing a specification.
3.1 Information Collection

A necessary task of the specification team is to understand the domain of the system application.
The customer environment and perspective must guide all specification activities. Well-honed
communication skills are needed on the specification team to elicit requirements information from
customers, managers, and domain experts. It is important to spend more AXxme in specification
making sure system requirements are well understood so that costly re-specifications and re-
designs are avoided. While enabling methods (e.g., brainstorming, Joint Application
Development) and automated support (e.g., The Requirements Apprentice from MIT) have been
proposed, the most effective way to understand the problem domain is to work closely with the
customer and put out the effort needed to fully comprehend the customer’s needs.

The sources of information are many and varied. The primary sources are the managers, users,
and operators of the potential system. If current systems are in use, then documentation such

as system manuals, user manuals, system logs, and current application programs may be useful
sources of information. Gathering business process information from individuals (managers,
users, operators) requires good interpersonal commumcatlon skills. The two primary techniques
are interviews and questionnaires.

In information systems development, the purpose of interviewing prospective system managers
and users is to make explicit the information processing procedures, needs, and objectives of the
business process. The current information processing system will be some combination of people
and machines, and the planned system, some new combination of people and machines, all of

ID52 - Vol. 4 - Specification Team Practices Page 18

which exhibit black box, state box, and clear box behavior. Both the existing and planned
systems will require explicit box structure descriptions. Thus, the knowledge gained in the
interviewing process must eventually be represented in terms of box structures.

The interviewing process is intended to reveal box structure behavior to the interviewer. Often
these box structures will emerge in fragmentary form, and will require corroboration and
elaboration through additional interviews and feedback sessions. For this reason, interviews
should not be regarded as solitary and stereotyped events, but rather as a continual process of
discussions with individuals and groups to arrive at common understandings and objectives.
Early box structure definitions, while often incomplete, can nevertheless be used to advantage
in these discussions, as a means to focus on the correctness and completeness of planned system
behavior.

The questions asked during a interview should focus on box structure behavior, but the words
and phrases employed need not depend on box structure terminology. Even though a person
being interviewed has no knowledge of box structure techniques, it is still possible to discuss box
behavior in very precise terms. Consider, for exampie, the following questions, phrased in the
everyday language of business, and their interpretation in terms of box structure concepts:

Question 1: "Do previous transactions against a credit account affect the processing of a
current transaction?"

Box Structure Interpretation: = "What is the black box behavior of credit account transaction
processing?”

Question 2: "What information must credit account transaction processing have on hand in
~ order to process a current transaction?"

Box Structure Interpretation: "What state information must be retained in the credit account
processing state box?"

Question 3: "How does credit account processing combine the information it has on hand with
a current transaction to produce output and update the information on hand"?

Box Structure Interpretation: "What are the transactions of the credit account processing state
box?"

Question 4: "What steps are required to process a transaction in credit account processing?"
Box Structure Interpretation: "What is the clear box behavior of credit account processing?"

Question 5: "Is account verification performed before, during, or after credit account
processing?"

ID52 - Vol. 4 - Specification Team Practices Page 19

Box Structure Interpretation: "How are account verification and credit account processing
related in terms of a box structure hierarchy?"

Interviews are an effective way to gather accurate and timely information. Questions can be
asked and responses clarified on the spot. Participants in an interview feel actively involved in
system development. However, interviews are time-consuming for both the developers and the
persons interviewed, so the number of interviews should be kept to a minimum and each
interview should be short and to the point.

The effectiveness of an interview is directly proportional to the preparation for it. The following
guidelines support effective preparation:

1. Define the purpose of the interview. Fishing expeditions rarely result in quality
information. Know the system area within which the person interviewed is expert and stick
to that area.

2. Only interview selected individuals. It is not necessary to interview everyone and time is
limited. Start with upper management and work down the organization hierarchy. This
provides the developers with an idea of how the system fits into the overall organization.

3. Be prepared with specific questions for each interview. Do homework and be ready to
guide the direction of the interview.

4. Schedule the interview at the interviewee’s convenience. However, set a strict deadline for
all interviews to be completed. If an individual is not available in that time frame,
schedule an acceptable substitute.

An interview has three phases, namely an opening, a body, and a closing. In the opening, state
the purpose of the interview, establish the legitimacy of the interview, and achieve a rapport with
the person interviewed. In the body, move from general, open questions to specific, detailed
questions. Vague answers should be clarified. Take clear notes or ask to record the discussion.
The notes should be summarized after the interview. The closing should leave both parties
satisfied with the interview. If questions remain, schedule another interview. Offer to send a
copy of the interview summary to the person interviewed. Prompt feedback allows any
misunderstandings to be discovered and rectified.

Questionnaires are used when information is needed from a large group of individuals, usually
system users. The design of the questionnaire is very important. The questionnaire must be
clearly written and easy to complete or it will be ignored by most users. It should be checked
for clarity and misunderstandings as carefully as a computer program, and test cases run to verify
its effectiveness. Analysis of the completed questionnaires is facilitated by the use of computers
to tally and statistically analyze responses.

ID52 - Vol. 4 - Specification Team Practices Page 20

As an understanding of the system problem is evolving, the Specification Team should begin the
creative process of proposing and evaluating potential solutions. Alternate solution strategies are
developed, analyzed, discarded, modified, and adopted. Understanding the solution domain
depends on the specification team’s experience and expertise with system hardware, software,
telecommunications, human-computer interfaces, human capabilities, and other areas required for
a system solution.

The true skill of a Specitication Team lies in its ability to understand the opportunities and
constraints found in the problem domain and to apply the most effective solution approaches.
The creative development of the required system extends from system specification through
system development and certification.

3.2 Reverse Engineering

Very frequently automation projects begin with the objective of improving how some current
organizational process or processes are performed. The objective of the automation may be to
reduce cost, improve performance, correct problems, adopt the current process(s) to a new or
changing environment, or improve the process to provideAXx new service that offers a
competitive advantage.

No matter what the reasons for the automation project the starting point in such situations is the
current system(s). Frequently the understanding of and documentation of these systems is not
exactly what is required. The ideal form to document behavior about a system is as a black box
function that describes the external behavior of each affected system. Since most automation
efforts are replacing or augmenting systems that were implemented before the development of
black box functions was common practice, the desired black box function is usually not available.
That means the information must be extracted from the information that is available. This
process is known as reverse engineering since what we are doing is looking at artifacts, often the
code itself, to extract system knowledge that can be used to reason about the system.

The process for reverse engineering of existing systems for cycle i is included in process P4.i.2.
The portion of that process that deals with reverse engineering is extracted below.

ID52 - Vol. 4 - Specification Team Practices Page 21

part Reverse Engineering
54.1.2.2: Assemble Information for System(s)
for each system in need of reverse engineering

do

case

existing system type
part Manual

S4.i.2.3: Manual System Reverse Engineering;
part Automated

S4.i.2.4: Automated System Reverse Engineering;
part Hybrid

S4.i.2.5: Hybrid System Reverse Engineering;
esac;

A brief overview of reverse engineering concepts is presented, followed by a description of the
engineering tasks in the process.

3.2.1 Reverse Engineering of Systems

Reverse engineering is the process of analyzing 1n existing system for the purpose of:
» identifying system components and their interrelationships,

» understanding the functionality of the system components, and

» representing the system components in abstract forms for reengineering the current system and
reuse in new system developments.

Reverse engineering is used for many important purposes. Design recovery provides for the
recapture of the system design from the system implementation. Redocumentation of an existing
system records the system’s functions in usable documentation. Reverse engineering sets the
stage for the reengineering of systems to add new system enhancements and to improve system
maintenance, understandability, and performance.

The ideal way to reverse engineer a system is to use box structures. Existing systems are found
in natural forms such as program code, standard operating procedures, flow charts, etc. These
natural forms are converted into clear box representations via transformation techniques. Once
in a structured clear box format, box structure derivations can be performed to produce functional

ID52 - Vol. 4 - Specification Team Practices Page 22

abstractions of the system in state box and black box formats. Black box functions are the target
of the reverse engineering process.

3.2.2 Identify Existing Systems

An initial activity in Cleanroom specification is to discover and gather all pertinent information
on the requirements for the desired system. Principal sources of this information are the existing
systems currently used to satisfy the needed functions. Only in a very few cases is the desired
system functionality not being met by some form of system either manual or automated. Of
course, the new system is expected to be much improved over the existing system in terms of
additional functionality, enhanced performance, more user-friendliness, greater security/integrity,
or some combination of these factors.

It is essential that the Cleanroom Specification Team identify pertinent existing systems and
understand their functionality as the starting point of the systems development project. Existing
systems can be classified as follows:

* A manual system - A manual system built around human processes currently handles the
required functions.

* An automated system - A fully automated system is implemented in computer hardware and
software.

o A hybrid system - A hybrid system combines manual and automated components.

Based upon the identification of existing systems, the next steps involve understanding these
systems via reverse engineering.

3.2.3 Reverse Engineer the Existing Systems

For each existing system, the Specification Team applies reverse enginecering methods to
understand the functionality of the system and to recover design and requirements information.
The amount of time and effort devoted to reverse engineering a given system is based on the
team leader’s evaluation of how important the existing system is for the specification of the new
system. The extent of the reverse engineering tasks is also greatly influenced by the quality and
quantity of the available resources on the existing system. Types of available system resources
include:

o Development Information: If the system is automated, information should be available on its
original development. Such information would include requirements specifications, analysis
and design documents, and test data. The specification team must also be aware of the
development process and methods used by the original development team.

ID52 - Vol. 4 - Specification Team Practices Page 23

e User and System Documentation: An effective system, whether manual, automated, or a
hybrid, must include some form of documentation. User documentation will explain the
procedures for using the system functions. System documentation describes the internal
workings of the system for effective maintenance and operations.

o Program Code: Automated systems contain program code. In most cases, the source code is
available for analysis. However, some teams may only have access to object code for the
existing system. This requires more sophisticated reverse engineering techniques for
abstracting the functionality of object code.

e Standard Operating Procedures (SOPs). For manual and hybrid systems there typically exist
SOPs for the performance of the systems. SOPs are presented in the form of flow charts,
algorithms, decision tables, or other procedural representations.

o Customers and Users: Interviews with the customers and users of the existing systems will
provide valuable information on the effectiveness of the existing systems. In particular,
information on the human-computer interfaces can be elicited.

» Operators and Managers: The operators and managers of the existing systems will give a
different perspective than the customers and users. Information on performance, integrity,
security, accuracy, reliability, and other quality issues can be gained by selected interviews.

The system information gained from the above sources provides tt:= basis for reverse engineering
the existing systems. In some cases the available information may be sufficient to answer all
questions.

Box structure analysis can be applied to derive a black box system representation. The goal is
to describe an existing system in box structure representations to support further rigorous analysis
and reverse engineering. System understanding is achieved by describing the system as a usage
hierarchy of referentially transparent clear boxes. Methods for transforming natural procedures
and structured program code into clear box formats are presented in Mills, Linger, and Hevner,
Principles of Information Systems Analysis and Design, 1986 and Linger, Mills, and Witt,
Structured Programming: Theory and Practice, 1979.

The analysis continues by building an increasingly abstract description of an existing system in
a recursive, bottom-up fashion. Detailed clear box descriptions of subsystems are derived to state
box and black box representations. These subsystems are then represented as black boxes within
procedural clear boxes at the next higher level of system description. This process continues
until the complete system is described and understood at the top-level black box behavior.

ID52 - Vol. 4 - Specification Team Practices Page 24

The Box Structure Analysis Algorithm is:
Box Structure Analysis Algorithm
L. Identify System Components

Task 1 - Modularize System into Components
Task 2 - Represent System Components as Clear Boxes

II. Abstract Box Structure Behavior

for Each Clear Box
do
Task 3 - Derive State Box
Task 4 - Derive Black Box
Task 5 - Analyze Black Box Behavior
od

II. Build Higher Level System Abstractions

if Top-level Black Box achieved
then
Algorithm completed
else
con
Task 6 - Group Related Black Box Components
Task 7 - Define Clear Boxes at Higher Abstraction Level
noc
fi

Repeat Step III until all black boxes are used in at least one clear box.
IV. Build Box Structure Usage Hierarchy

Task 8 - Build Box Structure Usage Hierarchy with Clear Boxes
Repeat Algorithm beginning with Step II

End of Box Structure Analysis Algorithm

The eight tasks of the Box Structure Analysis Algorithm are briefly described:

ID52 - Vol. 4 - Specification Team Practices

Page 25

Task 1 - Modularize System into Components

The Specification Team investigates the current representation of the existing system; from
information written procedures to actual software code. The system is divided into cohesive
modules; with each module containing a single function of the system. The modules should
be small enough to understand without any further decomposition. This is the first tasks of
bottom-up analysis.

Task 2 - Represent System Components as Clear Boxes

Each module must be transformed from its current representation to a clear box representation.
This transformation is straightforward for automated systems with program code. For manual
systems with modules in natural language or flow chart formats, a more involved, but still
straightforward, transformation may be necessary.

Task 3 - Derive State Box

Once the module is in a clear box format, a derivation is performed to discover the state box
representation. The clear box to state box derivation removes all procedural details and
integrates all internal black boxes into a single non-procedural state box behavior.

Task 4 - Derive Black Box

From the state box, the black box representation of the module is derived. The state box to
black box derivation removes all state designs. The state information is preserved in the
stimulus history of the black box. The black box behavior is a design-free representation of
the behavior of the system.

Task 5 - Analyze Black Box Behavior

The black box behavior of the current module is analyzed for a true understanding of the
behavior of the module. This behavior can be compared to the intended behavior to verify
consistency.

Task 6 - Group Related Black I:ox Components

As part of the bottom-up construction of the box-structured system usage hierarchy, black box
components at the current level are grouped into an abstraction at the next higher level. The
purpose of this step is to identify the appropriate black boxes that interact to define a coherent
function within the system. This grouping is guided by the information contained in the
existing system.

ID52 - Vol. 4 - Specification Team Practices Page 26

Task 7 - Define Clear Boxes at Higher Abstraction Level

New clear boxes are defined for the functions at the next level of the box structure usage
hierarchy. The information flow among the internal black boxes identified in Task 6 is
defined.

Task 8 - Build Box Structure Usage Hierarchy with Clear Boxes

All clear boxes defined in Task 7 describe a sub-hierarchy of box structures. These sub-
hierarchies are represented and stored as part of the box structure analysis of the existing
system. Each iteration through this algorithm builds higher and higher levels of abstraction
until, finally, a single box structure usage hierarchy representations the complete description
of the system.

For each new clear box defined in Task 7, the algorithm is repeated beginning with Step II.

In the reverse engineering process, information is gained on each existing system. Then,
depending on whether the system is manual (Task S4.i.2.3), automated (Task S4.i.2.4), or a
hybrid of the two (Task S4.i.2.5), an appropriate level of reverse engineering is performed in
order to understand the system’s functionality and applicability to the specification of the new
system. The principal differences among these three tasks is the form and quality of the
information the Specification Team must work with and the manner in which the Box Structure
Analysis is adapted to the existing systems. Manual systems require considerable work in step
1 of the Box Structure Analysis algorithm to form the natural procedures into box structure
formats. Automated systems typically have some forms of design documentation already
available; maybe even in electronic format. Hybrid systems will require an integration of
techniques to handle manual system and automated system representations.

Once the reverse engineering of the existing system is complete, the black box behavior of the
system is available for any necessary redesign. The Specification Team’s role is to present this
design opportunity to the Development Team in the new system’s specification.

The analysis tasks will produce reusable information on the existing systems that were analyzed.
This information will be placed into a project reuse repository for traceability and use by the
Development Team. The process of reengineering an existing system by box structure analysis
and box structure redesign is illustrated in Figure 1. For many system developments, this
reengineering process is sufficient to development the new system directly from the starting point
of an existing system.

Examples of performing box structure analysis of existing systems can be found in Principles
of Information Systems Analysis and Design. The Navy Supply Case Study in Chapter 1 is
an excellent example of an automated system whose analysis provided a deeper understanding
of the system’s true functionality. Based on this understanding, the system was completely

ID52 - Vol. 4 - Specification Team Practices Page 27

ubuiunu

T
s oo - e
obtain biack box components now code

Figure 3.2.1: Box Structure Analysis for Software Reengineering

redesigned to provide improved quality and performance. Chapter S of the text contains two
analysis examples of manual systems. A tax schedule is analyzed to its black box representation
and redesigned to be more effective. A business' hiring process, presented as a flow chart, is
analyzed via box structures. An effective technique for transforming the flow chart into a clear
box is presented. The process analysis points out several errors in the original process and
suggests improvements for the redesign of the hiring process.

3.3 Develop Black Box Models

Once the raw specification information is gathered from the customer (Task S4.i.2.1) and from
the reverse engineering of existing systems (Tasks $4.i.2.2 - $4.i.2.5), the Specification Team is
prepared to creatively design the system specification in terms of black box transactions. In this
section, techniques are presented for structuring the specification information into black boxes
and hierarchies of black boxes. Such black box models will provide effective brainstorming
opportunities for the Specification Team as well as provide valuable communication interfaces
with the customer.

ID52 - Vol. 4 - Specification Team Practices Page 28

The black box is a 'pure’, design-free representation of desired system behavior. External stimuli
enter the black box and responses are returned to the external environment. A meaningful black
box system has a well-defined behavior for mapping sets of stimuli into sets of responses. No
internal details of system state or procedurality are described in a black box.

During requirements determination, black box structures are used to describe required system
behavior. Black box requirements are based on sets and functions that can be described in
mathematical notation for appropriate systems or subsystems or in well-structured natural
language in a giveu context. In any case, a black box is defined by a mathematical function from
histories of stimuli to the next response. This detailed, low-level behavior is termed a system
transition. Let S be the set of possible stimuli, and R be the set of possible responses of a
system or subsystem. The black box transition function, say f, will map historical sequences of
such stimuli, in this case S*, to responses, R, shown in the form, f: S* — R.

The description of the transition function f
will be very complex for any reasonably
complex system with large numbers of
possible stimuli and responses. But this is a
complexity of the system that must be rec-
ognized and addressed. Getting this com-
plexity under control early in specification and |
design is much better than letting it go and
trying to fix it later when the software doesn't
work well.

p)—0

In order to manage this complexity, higher
levels of system abstraction are needed t0 Figure 3.3.1: Black Box Transaction
describe required system behavior as system Graphic

transactions. A black box transaction is a

pattern of black box transitions in which all responses, but the last, are predictable by the user.
The last response is new information. The sequence of stimuli to the transaction is called an
input and the sequence of responses, including the last response, is called an output. In the same
manner as a black box transition, the black box transaction is defined formally as a function, say
p, from a history of inputs, I*, to an output, O, in the form, p: I* — O. The black box transac-
tion is shown in Figure 2.

In essence, the transition describes low-level, system and software-oriented behavior while the
transaction describes higher level behavior that is better understood by humans (e.g., customers,
users, and developers). While detailed transitions are needed for eventual system software design
and implementation, system transactions are presented as requirements at higher levels of abstrac-
tion. In box-structured requirements determination, requirements are elicited in terms of trans-
actions, i.e., functions of inputs to outputs. Thus, while the system behavior will be designed and
implemented in terms of thousands of individual system software transitions, system requirements
are typically described with less than one hundred transactions.

ID52 - Vol. 4 - Specification Team Practices Page 29

One observation is that a typical system will support many kinds of users; many of whom are
there to make the system run for the others. For example, an on-line, all-day system will be
started every day by operating people, it will need people who tune its performance, people who
build the database, people who train other people in its use, and so on, in addition to the principal
users to add data, retrieve data, etc. So many kinds of transitions and transactions will be called
for every day. All these transactions need to be identified and planned for from the very
beginning, not brought in as after thoughts to those of the principal users.

The input into the requirements gathering phase is some form of problem statement, typically
presented as an English document. Requirements gathering tasks are performed in order to
collect all information that will help to determine the particular requirements of a system that
solves the presented problem. The goal is to format this information into black box transactions.
To support this goal, a simple requirements gathering method consisting of three steps is shown:

3.3.1 Requirements Gathering Procedure

Step 1: Identify Inputs - A list of system inputs is generated via information gathering tasks.. It
should be recognized that these inputs will be at various levels of abstraction, from databases and
files to simple data variables and physical signals (e.g., a clock pulse). All potential and avail-
able inputs should be listed. An analysis of the necessity and sufficiency of the inputs will be
performed later. The list of inputs is:

-I- (Ilp Iz' see ¢ Ii)‘

Step 2: Identify Oustputs - A list of required outputs from the system is generated. Close
interaction with the customer and users is needed to develop a complete output list. The output
list is defined as:

D- (01; Oz, s ee OJ)-

Step 3: Form Black Box Transactions - The black box behavior that relates the input history to
the required outputs is described. A set of black box transactions is generated, (p,, p,,Py).
Each transaction is a function from the input history to a set of required outputs, i.e.,

Dp(I*) - O/, where 0, < ©.
All required outputs must be produced by one or more transactions.
End of Requirements Gathering Procedure.

The following template can be used to contain the input list, the output list, and the set of
transactions that map input histories into outputs.

ID52 - Vol. 4 - Specification Team Practices Page 30

Template 1: Black Box Inputs and Outputs for Box <boxname>
List inputs and outputs for the box <boxname>.
inputs

I1: Invocation
IF2: Sensor value(sensor reading)

<I3>: <i3>

<I4>: <id>
responses

OF1: Open file for input

OF2: Read value

<03>: <o03>

<04>: <o0d>
Design Notes:

OF1 and OF2 are commands sent to the File.

¢ In developing inputs and outputs it is necessary to adopt the view of the software that will be
receiving the inputs and issuing the outputs.

The discovery of inputs, outputs, and black box transactions is an iterative process. The next
phase of requirements modeling forms this information into a hierarchical structure of
transactions. As this hierarchy expands, further steps of information gathering will be needed
to achieve consistency and completeness of the system specification. But with a rigorous
framework, the information gathering comes under intellectual control. The black box postpones
state and procedure invention, but provides a framework for dealing with the black box of a
complex system with many different kinds of users and therefore many different black box
inputs. As noted before, the need is to identify the entire behavior required in the black box
before going into system design.

3.3.2 Model System Requirements as Transactions

The ability to handle requirements information at various levels of abstraction is essential in order
to maintain intellectual control over the system specification process. An abstraction hierarchy
of black box transactions is an effective framework for building a model of system requirements.
This hierarchy supports both the top-down decomposition of system transactions and the bottom-
up composition of transactions into higher level transactions. The identification of reusable
subsystems and the recognition of essential common services are supported by this box-structured
modeling process.

ID52 - Vol. 4 - Specification Team Practices Page 31

...

A template for modeling black box transactions is shown below:

Template 2: Black Box Transactions for Box <boxname>
begin black box transaction I* || I: <boxname>

black box sub-transaction I* || I1: Invocation is
B01.01 OF1: Open file for input;
B01.02 OF2: Read value;
XOB;

black box sub-transaction <I2>: <i2> is
<
XOB;

end black box function I* || I: <boxname>
Design Notes:

* Given the inputs and outputs identified in Template 1 it is straightforward to write down each
of the outputs in terms of input histories.

» In general, the steps of discovering inputs, outputs, and behaviors are performed concurrently.
One first develops some inputs and outputs and then begins to refine the Black Box
transaction. This leads to identification to the need for more inputs and/or outputs. This
cyclic process continues until it seems the definition is complete. Then one moves on to
examine and to verify the transaction. These tasks may uncover the need for more inputs
and/or outputs or modifications to the control structure for the subtransactions.

The transaction hierarchy, shown in Figure 3, is constructed by modeling requirements
information in meaningful transactions at various levels of abstraction. Typical model
development would begin by identifying the top-level (i.e., level 1) system transactions. These
transactions would be grouped to encompass the functional requirements for the complete system.
Then, using the process of stepwise refinement, each transaction can be decomposed into a group
of sub-transactions at the next level of the hierarchy. At each step of refinement, the group of
transactions at the next level are verified for consistency with the parent transaction and are
analyzed for transaction closure.

In parallel with the top-down decomposition of required transactions, an analysis of the bottom-
up composition of detailed requirements into higher level abstractions can be performed. This
analysis is especially critical when reusable components from libraries or existing systems are
available. The modeling of the transaction hierarchy becomes a challenging, iterative process of

ID52 - Vol. 4 - Specification Team Practices Page 32

Figure 3.3.2: Black Box Transaction Hierarchy

matching customer and business needs with the resources available to satisfy those needs.

The transaction hierarchy is built through many iterations of requirements gathering, modeling,
and analysis of the model. This graphic representation of the system requirements is an excellent
communication device for interaction with customers, users, and business managers. Template
3 provides a means to record the brainstorming and analysis associated with building the

transaction hierarchy.

ID52 - Vol. 4 - Specification Team Practices

Page 33

Template 3: Transaction Hierarchy

<Graphical representation of the transaction hierarchy (e.g., Figure 3.3.2) is maintained here.>

Design Notes:

- A graphic editor is used to provide a visual representation of the transaction hierarchy. This
format allows brainstorming to occur on issues of transaction decomposition and transaction
composition. Transactions can be moved up, down, and throughout the hierarchy until an
appropriate specification is determined.

- Each transaction in the hierarchy references its BDL description in Template 2.

Black box transactions are ’pure’ representations of functional system requirements. Any
additional information, such as detailed information flows, control flows, or data structures, con-
strains the freedom of the system designer to produce the most effective system design.
However, such constraints may be valid based on the need to integrate with existing systems or
human behavior. Thus, the transaction hierarchy can be extended to include three types of addi-
tional information:

o State Constraints
o Procedural Constraints
* Non-Functional Requirements

Often system requirements do contain design constraints on such things as the availability and
use of data or the need to conform to a defined procedure. The operating or management
systems environment within which a system will be embedded may provide opportunities or place
demands on the specification and design of the desired system. If a specification can be modified
to make more of the software reusable with equal power, that should be done. In addition,
certain 'non-functional’ requirements, such as performance, behavioral, and documentation stan-
dards, can be stated in structured English forms, or in system performance models (e.g., Petri-
nets). It is important during specification reviews that the system owners understand that any
non-functional requirements beyond a black box are constraints upon the system’s design
freedom. In this way, many non-essential requirements can be discovered and eliminated.

Information on constraints and non-functional requirements can be represented with appropriate
models or structured English statements. These artifacts are linked to the affected transactions
in the hierarchy. For example, state constraints could be described by Entity-Relationship
Diagrams, procedural constraints could be described by control flow charts, and non-functional
requirements could be described by performance models.

ID52 - Vol. 4 - Specification Team Practices Page 34

Once the transaction hierarchy is accepted by the customer as a true reflection of system require-
ments, then the requirements are described in a more formal requirements modeling language as
a specification. The modeling representations found in Templates 1-3 for transactions and
transitions can be stated more precisely as functions in a Box Description Language. This
detailed requirements specification appears in Volumes II and III of the Specification Volumes
(see Section 5). The representation of requirements in a formal language provides two important
advantages:

» Rigorous analysis procedures can be performed on the requirements specification, and

* A consistent, complete, and clear requirements specification is given to the Cleanroom
development team. No ambiguities or unnecessary design constraints hamper the creative
tasks of system design.

An extended Box Description Language is presented in Appendix A of this volume. Rigorous
languages for requirements specification are quite recent. The formality of programming
languages is necessary to make assemblers and compilers possible. In a similar manner, formal
specification languages bring the definition of system requirements under intellectual control.
It may even be possible to execute specifications for analysis purposes.

3.3.3 Analyze Model

Throughout the previous phases of system requirements gathering and modeling, analysis
procedures are applied to measure and evaluate the quality of the system specification. Three
critical aspects of specification quality can be identified.

Consistency - The rule of consistency is that each group of black box transactions in the
transaction hierarchy must be consistent with its higher level parent transaction. In other words,
the individual behavior of the transactions must collectively match the behavior defined in the
parent transaction. It is important to note that the interactions of the children transactions are yet
to be designed. Thus, the transaction hierarchy does not exhibit referential transparency. The
lack of referential transparency precludes a formal verification of consistency as can be
performed during box structure system design. However, an informal analysis of consistency
throughout the transaction hierarchy is essential.

Completeness - Completeness is validated by determining that the problem description is
consistent with the black box. This is done to ensure that the black box represents the same
function as the original problem.

Closure - Closure can be validated by ensuring that every black box transaction has necessary
and sufficient sets of inputs and outputs. This is termed transaction closure. A straightforward
algorithm for checking transaction closure in black boxes is presented here. Note that black box
transition terminology (i.e., stimuli, responses, functions) is used instead of the transaction
terminology (i.e., inputs, outputs, transactions). The mapping between the two terminologies is

ID52 - Vol. 4 - Specification Team Practices Page 35

straightforward. Closure analysis can be applied to both transactions and more detailed transition
behaviors in the hierarchy.

Black Box Ciosure Algorithm

S =(s,58..,8): complete set of stimuli entering the system
R=(r,r1,...05): complete set of responses generated by the system
F=(f,f,...f): complete set of transition functions describing the behavior of the

black box

Step 1: Check that all responses are generated:

For all 1; in R there exists a subset S, of S and a f, in F such that f(S,) --> ;.

Step 2: Check that all stimuli are used:

For all s; in S, there exists a subset S, of S where s; is an element of S,, and there exists a
1, in R and a f, in F, such that £,(S,) --> r; and £i(S, - s) -/-> 1;.

Step 3: Check that all functions are used:

For all f, in F theve exists a 1; in R and a subset S, of S such that f,(S,) -->1;.
End of Black Box Closure.

During this procedure, unnecessary stimuli (inputs) can be deleted and additional needed stimuli
(inputs) can be identified and gathered. When requirements are compiled informally by several
people, both consistency and completeness problems can arise. A single requirements statement
assembled by several people under formal discipline of box structures can better insure both
consistency and completeness.

Clarity - Two forms of clarity are needed for effective requirements determination. The
requirements model must present requirements in a form understandable to the customer and
system users. The system specification must present requirements in a form appropriate for
system developers. The box-structured approach provides the flexibility for system requirements
to be stated in the language of the problem domain. Effective use of structured English
statements at high levels of the transaction hierarchy allows customers and users to better
understand the requirements model. The formal, mathematics-based framework of the Box
Description Language specification is a clear starting point for detailed system design, with no
unnecessary design constraints.

ID52 - Vol. 4 - Specification Team Practices Page 36

Template 4 can be used to record these analyses along with other analyses performed on the
black box definition.

Template 4: Transaction Analysis
List all analyses performed for the transaction hierarchy.

Hypothesis: The transaction groupings in the transaction hierarchy are consistent with
parent transactions.

- Analysis Process:
- Results:
- Transaction Modifications:

Hypothesis: The transaction hierarchy contains a complete description of system
requirements.

- Analysis Process:
(1) Make a mapping between each transaction and a section of the problem description.
(2) Ensure that all parts of the problem description have been covered.

- Results:

- Black Box Modifications:

Hypothesis: Black box closure exists for all transactions.
- Analysis Process:
- Results:

- Black Box Modifications:

Hypothesis: Each transaction is clearly described in terms understandable in the
application domain.

- Analysis Process:

- Results:

ID52 - Vol. 4 - Specification Team Practices Page 37

- Black Box Modifications:

Additional Analyses as Required

3.4 Develop Markov Usage Models

Since the concept of developing Markov usage models is at the basis of certification for
Cleanroom, it will be discussed in detail in Section 2 of Volume 6. However, the development
of the Markov usage models is the responsibility of the Specification Team.

ID52 - Vol. 4 - Specification Team Practices Page 38

CLEANROOM ENGINEERING SPECIFICATION
SECTION 4: SOLUTION DOMAIN ANALYSIS

In addition to understanding the problem domain the specification team needs to understand the
constraints and opportunities presented by the solution domain. They need to evaluate solution
options by conducting prototype experiments and preparing trade studies. They frequently need
to evaluate reuse opportunities so they can reduce development expense by preparing their
inventions to take advantage of components that can be acquired commercially, found in one of
the many commercial reuse repositories that are coming into existence or in the organizations
OWN reuse repository.

The process for understanding the solution domain is:

proc P4.i.3: Solution Domain Analysis-Cycle i
do [P4..3: Solution Domain Analysis-Cycle i]
con
for each analysis method in plan
do
case [select the appropriate analysis method]
analysis method is
part Information Collection [collect and document required information]
S4.i3.1: Information Collection;
part Reuse Analysis [consider reuse options effect on system behavior]
do
S4.i.3.2: Browse Reuse Repositories To Find Match For Needs;
S4.i.3.3: Prepare Cost/Benefit Analysis;
S4.i.3.4: Select Potential Reuse Modules for Integration into System;
until
Completion Conditions achieved for combination of $4.1.3.2-54.i.3.4
od;
part Black Box Models [document unspecified objects as black box fox functions]
S$4.1.3.5: Determine Black Box Behavior Of Other Solution Domain Objects;
part Prototyping [design, develop, conduct and appraise prototype experiments to
appraise solution possibilities]
do
S4.1.3.6: Develop prototype software using Cleanroom practices;
S4.i.3.7: Conduct and appraise prototype experiment
S4.i.3.8: Store prototype components in project reuse repository;
until
Completion Conditions achieved for combination of $4.i.3.7 and S4.i.3.8
od;
esac;
od;

ID52 - Vol. 4 - Specification Team Practices Page 39

noc;
until
sufficient Completion Conditions achieved for all selected analysis methods and (time
period up or sufficient understanding has been obtained)
od;
corp;

Each of the four main activities are discussed in the following subsections as follows:

Information Collection Section 4.1
Reuse Analysis Section 4.2
Determine Black Box Behavior of Components

Known to be in Solution Domain Section 4.3
Prototyping Section 4.4

4.1 Information Collection

The Specification Team gathers information on the solution domain using similar techniques as
discussed in Section 3. Interviews, questionnaires, literature surveys, vendor surveys,
demonstrations, and other means of gathering information are used. Solution domain information
sources would include the following:

Organizational Information System Architectures

The organization in which the system will operate may have well-defined IS architecture plans
and strategies in place. The system solution must comply with the standards set by the IS
architecture. It is important to discover and understand all applicable organizational IS
architectures.

Reuse Libraries
The Specification Team must gather information on all available reuse libraries. Information
would include content, organization, browsing methods, access methods, and cost of reusing
modules from the library.

Benchmarking Studies
Benchmarking is a total quality management technique wherein an organization compares its
processes with other organizations to discover the best-in-class processes. Building a new

system based on out-dated processes is foolish. It pays to discover the besi processes for
implementation in the new system.

ID52 - Vol. 4 - Specification Team Practices Page 40

Existing Systems that Solve the Similar Problems

Similar systems may exist in other parts of the organization or in other organizations. If the
team has access to these systems, they can learn good ideas as well as ideas that did not work
as well.

Theoretical Results

The Specification Team must stay abreast of the state-of-the-art in the application domain of
the system. Customer input to the team will be valuable on domain issues. The newest
theories and practices in the domain should be implemented in the system.

Consulting Experts

Application experts and technical experts are often necessary to provide complete and up-to-
date information on solution opportunities. For example, the specification of a modern
application system may require expertise in multi-media, human-computer interfaces, object-
oriented database systems, neural networks, or many other state-of-the-art technologies.

The solution domain information is used by the Specification Team to discover the most effective
ways to build the required system.

4.2 Reuse Analysis

The reuse analysis tasks for cycle i are included in process P4.i.3. The portion of that process
that deals with reuse analysis is extracted below.

part Reuse Analysis [consider reuse options effect on system behavior]
do
S4.i.3.2: Browse Reuse Repositories To Find Match For Needs;
S4.i.3.3: Prepare Cost/Benefit Analysis;
S4.i.3.4: Select Potential Reuse Modules for Integration into System;
until
Completion Conditions achieved for combination of $4.i.3.2-54.i.3.4
od;

Major gains in development productivity and system quality can be achieved by emphasizing
reuse as early in the system life cycle as possible. As each system and software module is
identified during specification, reuse opportunities should be explored in all available reuse

ID52 - Vol. 4 - Specification Team Practices Page 41

repositories. In performing this reuse analysis the Specification Team must be careful to define
external behavior but to not limit the internal inventions that are the responsibility of the
Development Team.

The three subtasks of reuse analysis are performed sequentially. Each task is discussed in the
following three subsections.

4.2.1 Browse Reuse Repositories

During system and software specification, black box transactions and transitions are described
in hierarchical structures. Black box definitions provide sufficient information to support the
matching of system and software requirements with reusable system and software modules stored
in repositories. Access to existing reuse repositories, both within and outside the organization,
is needed to support effective reuse.

In box structure terminology, reusable modules within and among systems are known as common
services. A common service is a data abstraction that is described in a separate box structure
usage hierarchy, and used in other box-structured systems. System parts with multiple uses
should be defined as common services for reusability. Also, predefined common services, such
as database management systems and input/output interfaces, should be used to advantage
throughout the box structured systcm. Box structures directly support the identification and reuse
of common services within and among systems.

The Specification Team must have an efficient, user-friendly interface for browsing reuse
repositories for requirements matching. Issues of module organization, indexing, requirements
representation, and access capabilities are areas of on-going research and development and are
not covered in this handbook. Essentially, the browsing subtask allows the specification team
to quickly identify reuse possibilities. Such reuse opportunities are then subjected to a thorough
cost/benefit analysis.

4.2.2 Analyze Reuse Costs and Benefits

A black box requirement can be matched with existing modules stored for reuse in a repository.
During system and software specification the benefits and costs of module reuse and modification
can be studied. Another effective use of reusable modules comes during the construction of the
transaction hierarchy. Knowledge of existing reusable modules can influence the team’s inven-
tion of black boxes at the next level in the transaction hierarchy.

As an example of requirements matching, assume there exists a reusable software module with
black box transaction behavior, r(I’*) — O’, where I’ and O’ are the inputs to and outputs from
the module. Given a black box transaction somewhere in the hierarchy, p,(I"*¥) — O", the
potential is evaluated for the reusable module to match the transaction requirements.
Requirements matching must be done on inputs (I’ and I"), outputs (O’ and O"), and behavior
(r and p). If an exact match is not found, several alternatives can be studied:

ID52 - Vol. 4 - Specification Team Practices Page 42

1. Use the reusable module as is and modify the system requirement to accommodate its
behavior.

2. Modify the behavior of the reusable module to match the system requirement.

3. Modify both the behavior of the reusable module and the system requirement in order to
produce an effective match.

4. Do not use the reusable module and search for other reuse opportunities or decide to develop
a module from scratch to satisfy the systern requirement.

A detailed matching algorithm is needed, along with a cost tradeoff procedure to evaluate the
most effective reuse strategy.

Opportunities also exist during the modeling of the transaction hierarchy to discover required
system common services. A common service is a portion of the system that can be reused in
several places in the transaction hierarchy. Reusable modules are common services. The
discovery and effective placement of common services in the specification model provides
important design and implementation efficiencies in later stages of system development. New
common services can also be defined and implemented as reusable modules for future system
developments.

4.2.3 Select Reusable Modules and Integrate into Specification

Based on the above analyses, reusable system and software modules are selected, retrieved from
the repository, and integrated into the specification. The selection of a reusable module will
typically require the modification of interacting transactions to accommodate module input and
output interfaces. Thus, the system and software specifications will be defined to fully integrate
the reusable modules.

While the effort of browsing reuse repositories, analyzing reuse cost/benefit, and integrating
reusable modules in the specification may seem high, the major benefits are accrued during the
Cleanroom development and certification tasks. A complete reusable module would include the
black box requirement, the state box and clear box designs, the certified software code, and all
related documentation. All of these reusable artifacts are integrated into the software system
design and implementation.

4.3 Determining Black Box Behavior For Objects Known To Be In Solution Domain

There are many situations where the software object under development will interact with other
objects to form a complete solution. Typical situations include projects where functionality is
to be added to the software or where the software is to use some hardware devise that is under
going parallel development. In such situations the specifiers and the developers need to know
how to interact with these other objects.

ID52 - Vol. 4 - Specification Team Practices Page 43

The best course of action is to apply the Box Structure Analysis Algorithm, as described in
Section 3.2.3, to the interface components of the other systems. This provides documentation
of the understanding of the behavior of the other object as a black box function. This can be
thought of as selected reverse engineering.

4.4 Prototyping

The prototyping tasks for cycle i are included in process P4.i.3. The portion of that process that
deals with reuse analysis is extracted below.

part Prototyping [design, develop, conduct and appraise prototype experiments to
understand and/or appraise solution possibilities)
do
54.i.3.6: Develop prototype software using Cleanroom practices;
S54.i.3.7: Conduct and appraise prototype experiment
S4.i.3.8: Store prototype components in project reuse repository;
until
Completion Conditions achieved for combination of $4.i.3.7 and $4.i.3.8
od;

These activities are performed whenever the need for prototyping is discovered during system
and software specification. Prototyping is an experimental process of building a well-defined
portion of a system in order to discover new information. This information is used to better
understand system and software requirements and/or solutions. Prototyping is an effective means
of evaluating and resolving risk during system specification and development.

The three tasks of the prototyping process are performed sequentially. These tasks are discussed
in the following three subsections.

4.4.1 Develop Prototype Using Cleanroom Process

The decision to develop a prototype is based on a cost/benefit study. This study compares the
cost of building the prototype versus the benefit of the information gained. A prototype must
have a well-defined objective and must be a self-contained development project. It is easy to get
carried away on building a prototype long after the desired information has been obtained.

Examples of typical prototypes include:

IDS2 - Vol. 4 - Specification Team Practices

User interfaces - The prototyping of screen interfaces, menu systems, report formats,
etc. is performed to obtain information on user behavior patterns and
system usage patterns.

Packaged software - Required system functions are prototyped on commercial software
packages to evaluate completeness and efficiency. Different software
packages can be compared in this way.

Innovative procedures - New, innovative procedures for providing system functionality are
tested by implementing them in a prototype that contains just enough
system support to fully evaluate them. By building a prototype
system environment, several alternative procedures can be compared
and evaluated.

When a decision is made to prototype a portion of the system, the prototype development process
will take on a life of its own. Following the standard Cleanroom development process, as
detailed in Volume 1, the prototype will go through stages of planning, specification,
development, and certification. A new stage of experimentation is then performed. The
prototype experiment is designed to provide the information required to satisfy the objective of
the prototype.

While the responsibility for the prototype belongs to the Specification Team, the actual
specification, development, and certification of the prototype system may be shared among all
Cleanroom teams. Several prototype construction scenarios can be considered:

Scenario 1: For small-scale prototypes and rapid prototyping, the Specification Team can
perform all specification, development, and certification tasks. This requires that the members
of the Specification Team be trained to perform all development and certification tasks.

Scenario 2: For small- to medium-scale prototypes, the prototype is specified, developed, and
certified by selected members of the Specification Team who will become members of the
Development Team and Certification Team as the project progresses. This scenario is likely in
Cleanroom organizations where projects are completed sequentially with little overlap.

Scenario 3: For medium- to large-scale prototypes, the prototype specification is completed by
the Specification Team and given to the Development and Certification Teams for prototype
development and certification. This scenario occurs when the Specification Team has a large
specification to work on and the other Cleanroom teams are available to support the specification
tasks before they begin their work on the actual system.

The selection of the most beneficial scenario for executing the scenario will be based on factors

such as prototype size, required resources, availability of Cleanroom teams, number of concurrent
projects, time constraints, etc. Upon completion of the prototype, the experiments are again the

ID52 - Vol. 4 - Specification Team Practices Page 45

responsibility of the Specification Team to execute. Experimental results are gathered and
analyzed, leading to an appraisal of the prototype.

4.4.2 Conduct and Appraise Prototype Experiment

The objective of a prototype is to gain new information in the Cleanroom specification process.
After construction of the prototype, one or more experiments are performed on the prototype to
gather the information desired. An appraisal of the experimental results can lead to one of the
following management decisions:

i) The information gained from the experiment satisfies the objectives of the prototype.
ii) The information is incomplete. New experiments are designed to gather more information.

iii) The information is incomplete. The prototype development plan is revised in order to
expand or modify the scope of the prototype. The Cleanroom development process for the
prototype is revised to accommodate the revisions. Additional experiments are designed for
the revised prototype.

iv) The information is incomplete and a reanalysis of the cost/benefit of the prototype
precludes further expansion of the prototype or the experiments. The information gained is
used to the extent possible to satisfy the prototype objectives.

The completion criteria for this task is determined by the management decisions in i) or iv)
above.

4.4.3 Store Prototype Modules in Reuse Repository

Regardless of the appraisal of the prototype experiment, the software modules developed and
certified within the prototype should be placed in the project reuse repository. The Cleanroom
development team can use these modules as a starting point for the development of the actual
software system modules. Thus, the development and certification efforts on the prototype will
be conserved during the development and certification of the final system. The identification of
potential reusable modules was discussed in Section 4.2.

ID52 - Vol. 4 - Specification Team Practices Page 46

CLEANROOM ENGINEERING SPECIFICATION
SECTION 5: PREPARING THE SPECIFICATION

Process P4.i.4, Prepare Cycle i Specifications, consists of six tasks performed concurrently and
interactively.

proc P4.i.4: Prepare Cycle i Specifications
do [P4.i.4: Prepare Cycle i Specifications]
con
S54.i.4.1: Record Cycle i Results In Mission Volume;
54.i4.2: Record Cycle i Results In User’s Reference Manual Volume;
54.i.4.3: Record Cycle i Results In Black Box Function Volume;
S54.i.4.4: Record Cycle i Results In Mission Validation Volume;
54..4.5: Record Cycle i Results In Usage Profile Volume;
S4.i4.6: Record Cycle i Results In Construction Plan Volume;
noc;
until
Completion Conditions achieved for S4.i.4.1 through S4.i.4.6
od;
corp;

The concurrent tasks of problem and solution domain analysis support the information gathering
and analysis needed to produce the detailed software specifications of the designated system
transactions. The results of the software specifications are formed into six specification volumes.
The six specific tasks of Cleanroom software engineering are described in terms of building these
six volumes. The completion criteria for the six tasks are the completion of these six volumes.

5.1 Volume I - The Mission

The purposes of the Mission Volume are (1) to define the mission that the software is to fulfill,
(2) to define the context in which the software will be operating, and (3) to record the argument
that the software satisfies the defined mission. The following template provides a typical outline
of Volume L

ID52 - Vol. 4 - Specification Team Practices Page 47

Software Specification For [Project Name]
Volume I - The Mission
Section 1: The Mission Statement

The mission statement identifies the purpose and objectives of the software to the customer and
the customer’s organization. The mission statement specifies what effects the software is
intended to have on all stakeholders. A mission statement should rarely be more than one page.
It should be a clear, concise statement of intent. A stakeholder is any noncompetitive individual
or organization directly affected by the software’s behavior and performance; for example,
stockholders (it is a rare software system that does not affect profit), customers, suppliers,
distributors, employees, government agencies, etc.

Section 2: The Detailed Mission

This section defines the requirements allocated to the software in order for the software to be in
a position to satisfy the mission statement. This section should define each requirement for the
software in a concise statement; typically, one or two sentences.

Section 3: The System Context

This section defines the context or the environment in which the software will be operating. The
results of the system specification tasks will provide most of this information. The precise
contents of this section will differ depending on the situation. The following lists topics that may
be included:

» A description of the current, automated or manual system to be improved by the planned
development.

e The hardware and software available for use.
o Existing systems with which the new system must interface.
» The resource (e.g., personnel, budget, facilities) environment planned for the new system.

The exact contents will depend on what is required to insure that the contemplated role of the
software in the environment to be created is clear.

IDS52 - Vol. 4 - Specification Team Practices Page 48

Section 4: The Mission Validation Argument

This section contains the arguments that the software is implemented and accomplishes the
defined mission, the software will accomplish its intended purpose in the environment in which
it will be operating.

5.2 Volume II - User’s Reference Manual

The purpose of the User’s Reference Manual is to provide a user’s view of the software’s
functionality. The use of tcansactions and the transaction hierarchy gives a structured picture of
the functions in the system. The system context is also described along with a description of the
desired system performance. The following template provides a typical outline of Volume II.

Software Specification For [Project Name]
Volume II - User’s Reference Manual
Section 1: The Environment

The software exists in a larger environment. This section defines the environment that the
software will operate in. Typical subsections are:

Hardware
. Peripherals
Interface devices
Communications networks
Operating systems
Software applications
Databases
Personnel (e.g., operating staff, users, managers)

Section 2: Software Transactions

Transactions are defined as functions in terms of input-output behavior. Lists of transactions are
determined based on a thorough understanding of the problem domain. Classes of transactions
would include:

User transactions

Administrator transactions
Manager transactions
Start-up/Shut-down transactions

ID52 - Vol. 4 - Specification Team Practices Page 49

¢ Error transactions

Transaction hierarchies are developed to support both top-down and bottom-up requirements
determination.

With each transaction, clear designation of inputs and outputs is required. These inputs and
outputs must be formally related to the black box stimuli and responses as detailed in Volume
1.

Section 3: Software Interface Specifications

Precise syntax describes the invocation and the activation of the software components. The
stimuli and response interfaces for each transaction are specified in this section.

Section 4: System Performance

In many systems there are performance constraints associated with the transformation of inputs
into outputs. These requirements are typically related to response times, throughputs, and accura-
cy (i.e., precision) of the transaction. All performance standards must be defined.

Section 5: Undesired Events

Software is designed to handle undesired events as well as the desired or planned events. In this
section, all undesired events are enumerated and the response that will be taken to each undesired
event is defined along with the corrective actions the user may take in those cases where
corrective action is required.

Section 6: Software Initiation

This section describes what to do when the software arrives from the development team. It
describes how the software is to be installed, configured, how files are to be initialized, how the
software is invoked for the first time, how to handle failures, and all other activities associated
with making the software ready to use.

Section 7: Glossary

List of words uscd in the User’s Manual.

Section 8: Index

Location of words in the User’s Manual.

ID52 - Vol. 4 - Specification Team Practices Page 50

5.3 Volume III - Black Box Function

The purpose of the Black Box Functions Volume is to define an implementation-free view of the
system and software being designed. This implementation-free view is obtained by specifying
functions which define the conditions in terms of stimuli histories that cause the presentation of
each possible response that can be produced by the software. The following template provides
a typical outline of Volume HI.

Software Specification For [Project Name]
Volume HI - Black Box Function
Section 1: The Stimuli

This section lists all stimuli and for each stimulus provides an exact name, a brief description,
and a reference name or number used in the black box function for identification purposes. The
precise syntax and format of each stimulus is required. Also required is the method by which
the stimulus is obtained from the system environment. Transaction closure must ensure that all
stimuli are listed for the desired system. This will require several iterations to develop a
complete stimulus list.

Section 2: The Responses

This section lists all the responses and for each response provides an exact name, a brief
description, and a reference name or number used in the black box function for identification
purposes. The precise syntax and format of each response is required. Also required is the
method by which the response is presented to the system environment. Transaction closure must
ensure that all responses are listed for the desired system. This will require several iterations to
develop a complete response list.

Section 3: The Black Box Functions
This section contains a sub-section for each black box function in the software system. A black
box hierarchy is based on the transaction hierarchy of Volume II. New functions will be needed

to completely specify the transaction requirements.

For each black box, the required behavior is defined by a function from stimulus histories to
responses. The black box functions can be expressed in terms of pseudo-code or program tables.

It is very important that these functions be defined carefully and are well written so that everyone

who is interested in the software can read and comprehend them. It is very important that no
state data or other implementation-dependent inventions creep into the definition of the black box

ID52 - Vol. 4 - Specification Team Practices Page 51

functions because if they do, they are no longer black box functions. Once they become
something besides black box functions, they lose their independence and ease of comprehension.

5.4 Volume IV - Black Box Validation

The Black Box Validation presents an argument which justifies the correctness of the Black Box
Functions. This argument is not easy to make, but serves as the basis for accepting or rejecting
the system specification. The following template provides a typical outline of Volume IV.

Software Specification For [Project Name]
Volume IV - Black Box Validation
The Black Box Verification Argument

This volume contains the argument that the system is implemented so that it satisfies the defined
black box functions then the software will fulfill its intended mission. This argument can be
made as formal as necessary to satisfy verification requirements; for example, for safety-critical
systems, complete proofs of system correctness may be needed. In any case, it is important that
this argument be well presented since it is necessary to satisfy all interested parties that the
software accomplishes its mission. Lower level design work should not progress until all
stakeholders are satisfied with the black box functions and the verification arguments.

Verification arguments can be built along the lines of the transaction and black box hierarchies
developed in Volumes II and III. Grouping functions into transactions allows a natural approach
for verifying that complete and closed functional behavior satisfies system requirements.

5.5 Volume V - Usage Profile

The Usage Profile contains the definition of anticipated software use by each class of system
user. This definition is required to develop test scenarios in accordance with usage specifications
so it is possible to make measurements of the reliability of the software in its intended
environment.

The following template provides a typical outline of Volume V.

ID52 - Vol. 4 - Specification Team Practices Page 52

Software Specification For [Project Name])

Volume V - Usage Profile

The construction of the system’s usage profile using Markov chains is described in detail in
Volume 6 - Certification Team Practices. The sections of this volume are:

Section 1: Usage States

In this section, the usage state definition is established and the individual usage states are
enumerated. Some argument about the validity and completeness of the definition is also
included.

Seciion 2: Stimuli and Stimuli Distributions
This section contains an enumeration of the stimuli that appear in the system. Additionally, the

distributions of the stimuli in various modes of operation are also presented, to provide an
accurate model of the expected use of the software to be developed.

Section 3: Usage Profile

This section contains the stimuli and the transitions among the usage states caused by applying
each stimulus. This information can be organized as a state transition diagram (STD) with the
usage states comprising the state set and the arcs connecting the states labeled with stimuli. An
equivalent formulation is a transition matrix with the states as indices and the stimuli as the
matrix entries.

Once the arcs are established, each is assigned a probability of occurrence. These probabilities
are documented in this section along with any data or analysis that was used in obtaining the
probabilities.

Section 4: Assumptions

All the assumptions made in defining the usage states or establishing the stimuli distributions
should be organized and included in this section for convenient review by interested stakeholders.

Section 5: Usage Profile Analysis
The statistical analysis of the usage profile should be included in this section. The data can be

included in its entirety but should also be summarized as appropriate for the application. Any
specific items of interest to stakeholders should be identified and highlighted.

ID52 - Vol. 4 - Specification Team Practices Page 53

.

If several iterations of adjustments to the stimuli distributions are necessary, all such analyses do
not have to be included. However, it is helpful to show the specific results that led to successive
changes to the distributions and some documentation about how the changes were conceived.
This way a history of the development of the usage profile is maintained.

5.6 Volume VI - Construction Plan

The purpose of the Construction Plan is to develop a plan for the Cleanroom development and
certification teams during the actual software development. The plan contains the actual modules
and functions to be a part of each increment. The result is a list of modules that the development
team needs to produce for each increment, and the functionality available for the certification
team to certify for each increment. The following template provides a typical outline of Volume
VL

Software Specification For [Project Name]
Volume VI - Construction Plan

Based on a thorough analysis of system requirements and available resources (e.g., budget, time,
software engineers), the desired system is divided into self-contained increments for development
and certification. Each Increment is defined in a separate section of this volume in the following
manner:

Increment j:

1. Specification references for increment j

2. Increment Architecture

System and software context for increment j
Black Box Hierarchy for increment j

3. Module 1 - Black Box Function Name
References to Volumes Il and V for black box function and certification information.

4, Module 2 - Black Box Function Name
References to Volumes III and V for black box function and certification information.

Continued for all software modules included in increment j.

ID52 - Vol. 4 - Specification Team Practices Page 54

CLEANROOM ENGINEERING SPECIFICATION

SECTION 6: APPRAISING CYCLE I SPECIFICATIONS

Experience indicates that short specification cycles that encourage frequent, short reviews of
progress and directions is effective for developing quality specifications. The important aspects
in planning for the specification cycle are to assess the current situation, develop objectives that
can be accomplished in two to four weeks and then assess progress and accomplishments. In this
way the Specification Team can organize to have good interactions with all stakeholders in the
system.

The specification cycle evaluation process is:

proc P4.i.5: Appraise Cycle i Specifications
do [P4.i.5: Appraise Cycle i Specifications]
M4.i.5.1: Review and Evaluate Cycle i Specifications;
M4.i.5.2: Management Decision: (1) Specifications Suitable To Initiate Development
or (2) Specification Problems-Replan Project or (3) Continue Specification
Effort with Cycle i+1;
od;
until
Completion Conditions achieved for M4.i.5.2
corp;

Planning in the Cleanroom environment is discussed in Volume 3 - Cleanroom Planning. Either
the Specification Team Leader of the Software Engineering Manager will host the review and
the analysis. The normal participants for the reviews and contributors should be specified in the
Software Development Plan for the project. The main issue is to get a sufficient number of
system stakeholders involved so that the team can be sure that it is solving the right problem.
Short, frequent, meaningful reviews are the best way to insure that inventions being made by the
Specification Team are the inventions required to solve the real problem. It is important that
there be good coordination between the planning activity P4.i+1.1 and the analysis activity P4.i.5.
In planning for cycle i+1 the Specification Team Leader and the Software Development Manager
need to take into account all the findings made during the analysis process.

IDS52 - Vol. 4 - Specification Team Practices Page 55

CLEANROOM ENGINEERING SPECIFICATION
SECTION 7: REVISING SPECIFICATIONS

There are two situations where the specifications are involved in maintenance. There are the
normal interactions in which the Specification Team interacts with the Development and
Certification Teams. In this situation, they must consult with these teams and keep the
specifications under configuration management. The process is

proc P7: Specification Configuration Management
[This process results in the specification being kept current with all changes required due to
normal project findings.]
do
con
S7.1 Consult with Development and Certification Teams About Specification Issues;
$7.2 Update Specification as required;
S$7.3 Increase Understanding of Problem and Solution Domains;
noc;
until
project spiral terminated and Completion Conditions for combination of S7.1 and S7.2
achieved
od;
corp;

The second situation reflects the dynamic nature of software systems development. This
dynamism precludes the freezing of specifications before beginning the Cleanroom development
and certification of software increments. Specifications must be viewed as dynamic and
susceptible to change throughout the Cleanroom development process. The overall Cleanroom
process model as detailed in Volume 1 contains decision points in the process where revisions
can be made to the specification. Therefore, the revision process is a common service and
identified as PCS2, Update Specification.

ID52 - Vol. 4 - Specification Team Practices Page 56

proc PCS2: Update Specifications
[This process results in an updated specification]
do [PCS2: Update Specification}
if Question or Issue or stimulus from outside project or error discovery causes a
specification change
then
do
con
SCS2.1: Increase Understanding of Problem and Solution Domains;
SCS2.2: Update Specification;
noc;
SCS2.3: Publish Change Sheets;
MCS2.4: Management Decision: (1) OK continue current plan with revised
specifications or (2) Revised specifications require replanning

until
Completion Conditions for MCS2.4 achieved
od;
fi;
od;
corp;

The primary tasks of this process are to increase the Specification Team’s understanding of the
problem and solution domains and to revise the specification based on this new information.
Then appropriate specification changes are published and a management decision is made
whether the changes require any project replanning. The following sections describe the tasks
of these two processes:

Increase Understanding of Problem and Solution Domains Section 7.1
Update Specification Section 7.2
Publish Specification Changes Section 7.3
Perform Replanning Section 7.4

7.1 Increase Understanding of Problem and Solution Domains

Many issues and questions arise during all phases of the Cleanroom development process. Most
issues and questions come from inadequate understanding of the specifications or the
specifications are incomplete. In either case, the Specification Team must provide clarifications
and answers expeditiously.

Specifications will evolve over time as system customers, users, managers, and developers add,
delete, and modify requirements. While such changes should not be allowed to get out of
control, it is normal for requirement changes to occur and they must be effectively managed.
The Specification Team is responsible for maintaining configuration control over the specification

ID52 - Vol. 4 - Specification Team Practices Page 57

documents and alerting all Cleanroom project members when changes to the specification are
posted.

The first task required of the Specification Team when faced with a issue or question is to fully
understand it. This will require talking with the individual(s) who raised the problem. If it is
a simple misunderstanding of the specification, the matter can be settled by a clarification and
complete answer.

Deeper system issues will necessitate an increased understanding of the problem domain and the
solution domain. The Specification Team may need to gather more requirements information
through interviews, document reviews, and prototyping. Also, more information on solution
opportunities can be gathered. This new information is integrated with the existing information
to model revised system and software requirements in the form of black box transactions and
transaction hierarchies. The revised requirements are reviewed with customers and the
appropriate Development Team members to verify that the issues and questions are satisfied by
the proposed revisions. The task of increasing the understanding of system requirements
continues until the revisions are verified.

7.2 Revise Specification

Configuration control of the specification documents are critical to the control of the Cleanroom
project. Revisions to the specification are entered under strict change control. Two sets of
changes are made:

Requirements Models - Changes are made to the appropriate black box transactions and the
transaction hierarchy. New analyses on consistency, closure, completeness, and clarity are
performed on the altered transactions. New and modified transactions are evaluated for software
development.

Requiremnents Specification - The six volume software specification is revised where appropriate.
New analyses of reuse opportunities may be performed.

The specification revisions are evaluated in a team review to verify correctness and how well the
changes satisfy the original issue or question. The appropriate customers and Development Team
members are also brought in to discuss the impacts of the revisions on the current state of the
project.

7.3 Publish Specification Changes

Strict configuration control of the specification documents are essential. Once the specification
revision is accepted, a formal specification revision is published and disseminated to all
Cleanroom teams. A new revision number may be assigned to the new specification version.
Based on the extend of the revision, a complete set of specification documents may be published
or just the changed pages of the current documents. Project managers must ensure that the

ID52 - Vol. 4 - Specification Team Practices Page 58

specification documents are updated promptly and no further work is done based on outdated
specifications. :

7.4 Perform Replanning

It is a management decision whether the changes to the specification necessitates replanning the
Cleanroom project. Changes in resource (e.g., time, budget, personnel, equipment) allocation
may be needed to develop a system to meet the new specifications. The decision would be either
to continue the project with the current plan or to revise the project plan. The issues of
Cleanroom planning, including the analysis of replanning, are presented in Volume 2 - Cleanroom
Planning.

ID52 - Vol. 4 - Specification Team Practices Page 59

CLEANROOM ENGINEERING SPECIFICATION
SECTION 8: TAILOR SPECIFICATIONS TO INCREMENT J

In Volume VI, Construction Plan, of the specification, the software is formed into increments,
or accumulations of increments, for development and certification. As the Cleanroom Develop-
ment Team and Certification Team begin their work on increment j, the Specification Team must
tailor the specification for that increment. This is the first subtask, P5.j.1, of process PS.j.

proc P5.j: Software Development and Certification Preparation
[For each P5.j, the specification is tailored, then the software is designed to the code by the
Development team (P5.j.2), while the Certification team does the work necessary to prepare
for certification of the increment (P6..3).]
do [P5.j: Software and Certification Planning]
run P5j.1: Tailor specification to increment/accumulation j;
con
run P5.j.2: Prepare for Certification of Accumulation j;
run P5.j.3: Increment j Development;
noc;
until
Completion Conditions achieved for P5.j.2 and P5.j.3 or P5.j.2 team decision indicates the
need for replanning or specification revisions
od;
corp;

The tasks of P5.j.1 are:

proc P5.j.1: Tailor specification to increment/accumulation j
do [P5.j.1: Tailor specification to increment/accumulation j]
con
S5.j.1.1: Tailor Black Box function to increment/accumulation j;
§$5.j.1.2: Tailor Usage Profile to increment/accumulation j;
noc;
until
Completion Conditions achieved for S5.j.1.1 and S5.j.1.2
od;
corp;

The required tailoring tasks are defined by the increment decisions presented in Volume VI of
the specification. Once the decisions on software increments are made, the Specification Team
will group the information found in the Black Box Functions (Volume III), and the Usage Profile
(Volume V) into a convenient format for presentation to the Development Team and the
Certification Team. Tailoring will involve reorganization of these three volumes along with any
specification revisions necessary to support the increment definitions. In many situations the

ID52 - Vol. 4 - Specification Team Practices Page 60

Development Team and the Certification Team will be tasked to do this work. In this way they
gain familiarity with the work to be done.

ID52 - Vol. 4 - Specification Team Practices Page 61

CLEANROOM ENGINEERING SPECIFICATION
APPENDIX A - BOX DESCRIPTION LANGUAGE BNF

The BNF below is presented to clarify the valid syntax for Black, State and Clear Boxes. More
specifically, one will see that a part of the BNF that appears here for the Black, State and Clear
boxes also appears in the respective templates for each box.

Notation:
* means 1 or more
" means 0 or more

<design object> = <black box> | <state box> | <clear box>

<black box> = black box function S* || S <object name> is
[black box subfunction S*|| <stimulus name> is
<structure>*
XOB;J*
end black box function S* || S <object name>

<state box> 1= state box function S: <object name> is
[state box subfunction <stimulus name> is
<structure>"
XOB:I*
end state box function S: <object name>

<clear box> = begin clear box <object name> is

[stimuli

<stimulus name>"
responses

<response name>
state

<state name>
data variables

<variable name>" |
var

<stimulus name>"

<response name>’

<state name>

<variable name>']
proc <object name>

<CBstructure>*
corp;

ID52 - Vol. 4 - Specification Team Practices Page 62

<object name> ::= object name

<stimulus name> == SXXi: stimulus name | <variable name>

<response name> == RXXi: response name | <variable name>

<state name> ;= TXXi: state name | <variable name>

<variable name> ::= variable name

<structure> = <sequence> | <fordo> | <ifthen> | <ifthenelse> | <case> | <whiledo>

| <dountil> | <connoc>

<CBstructure> <structure> | <run> | <use>

<sequence> u= (<structure> | <statement>;")*

<fordo> w= for
indexlist
do
<sequence>
od;

<ifthen> v=if
<condition>
then

<sequence>
fi;

<ifthenelse> u= if
<condition>
then
<sequence>
else

<sequence>
fi;

<case> 2= case

p
(part(CLi)

<sequence>)"
else

<sequence>
esac;

ID52 - Vol. 4 - Specification Team Practices Page 63

use <BBstatement>

1= any statement that is returning a response, presenting a description of

actions (non-commentary), or making an assignment.

<whiledo>> = while
<condition>
do
<sequence>
od;

<dountil> = do
<sequence>
until
<condition>
od;

<connoc> = con
<sequence>
noc;

<run> = run <cs>

<use> =

<statement>

<condition> =

<cs>

<BBstatement> ::= A stimulus to a lower level black box

ID52 - Vol. 4 - Specification Team Practices

any logical expression that can evaluate only to true or false.

= A name of a common service that is at the current level of the software

system’s parts hierarchy.

Page 64

